Всю нашу житье мы отсчитываем промежутки времени, что друг за другом определяют определенные события нашей существования. В целом без отсчета времени в нашей жизни не обойтись, ведь собственно по часам и минутам мы распределяем свой распорядок дня, а эти дни складываются в недели, месяцы и годы. Можно произнести, что без времени мы бы потеряли какой-то определенный смысл в наших действиях, а еще буквальнее, в нашу жизнь однозначно бы ворвался хаос. Но в этой статье мы вовсе не о фантастических реалиях вероятного и даже не о гипотетически невероятном, а все же о реально доступном. Ведь если это нам надо, если то к чему мы свыклись так необходимо, так зачем же отрешаться от удобного!? Мы о том, как и с помощью чего можно измерять пора. Нет, этот лозунг о том с помощью чего можно измерять время несколько забавен, так как это знает даже первоклассник. Возьми обычные часы любой из вероятных конструкций, будь то механические, песочные, электронные и измеряй время. Однако часы не вечно могут быть удобны. Скажем если нам необходимо запускать или отключать какое-то электронное конструкция, то лучше всего это реализовать на электронном таймере. Именно он возьмет на себя долги по включению и выключению устройства, путем автоматической электронной коммутации управления конструкциями. Именно о таком таймере на микросхеме NE 555 мы и расскажем в нашей статье.

Схема таймера на микросхеме NE555

Взгляните на рисунок. Как это может показаться банально, но микросхема NE555 собственно в этой схеме работает в своем штатном режиме, то есть по ровному назначению. Хотя на самом деле может быть применяться как мультивибратор, как преобразователь аналогового сигнала в цифровой, как микросхема обеспечивающая стол нагрузки от датчика света.

Давайте кратко еще раз пробежимся по подключению микросхемы и принципу труды схемы.

После нажатия на кнопку «reset» мы обнуляем потенциал на входе микросхемы, так как по сути заземляем вход. При этом конденсатор на 150 мКФ оказывается разряжен. Сейчас в зависимости от емкости подключенной к ножке 6,7 и земле (150 мКФ), будет зависеть этап задержки-выдержки таймера. Заметьте, что здесь также подключен и ряд резисторов 500 кОм и 2.2 мОм, то кушать эти резисторы тоже участвуют в формировании задержки-выдержки. Регулировать задержку можно с поддержкой переменного резистора 2.2 М. Но наиболее эффективно время можно менять линией замены конденсатора. Так при сопротивлении цепочки резисторов около 1 мОм, задержка будет возле 5 мин. Соответственно если выкрутить резистор на максимум и сделать так, чтобы конденсатор заряжался максимально медлительно, то можно достичь задержки в 10 минут. Здесь надо произнести, что при начале отсчета таймера загорается зеленый светодиод, когда же срабатывает таймер, то на выводе является минусовой потенциал и из-за этого зеленый светодиод гаснет, а загорается алый. То есть в зависимости от того, что вам надо, таймер на включение или выключение, вы можете воспользоваться соответственным подключением, к красному или зеленому светодиоду. Схема простая и при правильном соединении всех элементов в настройке не бедствует.

P/S Когда я нашел в интернете эту схему, то в ней было еще соединение между выводом 2 и 4, но при таком подключении схема не трудится!!! 2 вывод надо подключать к 6 контакту, это заключение было сделано исходя из иных аналогичных схем в интернете. При таком подключении все работало!!!

В случае нужды управления таймером силовой нагрузкой, можно использовать сигнал после резистора в 330 Ом. Эта о точка показана алым и зеленым крестиком. Используем обычный транзистор, скажем КТ815 и реле. Реле можно применить на 12 вольт. Образец такой реализации управления силовым питанием приведен в статье датчик свет, сморите ссылку рослее. В этом случае можно будет выключать-включать мощную нагрузку.

Подводя итог о таймере на микросхеме NE555

Приведенная тут схема хотя и работает от 9 вольт, но вполне допускает питание и на 12 вольт. Это значит, что такую схему можно использовать не лишь для домашних проектов, но и для машины, когда схему напрямую можно будет подключить к бортовой сети автомашины.
В этом случае такой таймер может быть применен для заминки включения камеры или ее выключения. Возможно применить таймер для «ленивых» указателей заворотов, для обогрева заднего стекла и т.д. Вариантов действительно много.

Реле задержки времени предназначено для регулировки последовательности работы определённых элементов электрической схемы. В основном такие устройства используются в приборах, где требуется автоматическое выполнение определённого действия через установленный промежуток времени.

Общая информация об устройстве

Реле – это устройство, которое работает по принципу аккумулятора . По продолжительности рабочего механизма могут быть суточные, недельные, часовые. Устанавливают эти приборы там, где нужен контроль цепей, которые обладают небольшими мощностями. При этом происходит полная изоляция между контрольным и управляемыми проводниками. Реле направлено контролировать одновременно несколько схем, при помощи одного сигнала.

Изначально, реле применялись в междугородных телефонных цепях. Они выполняли функцию усилителя : дублировали сигнал от одного контура к другому и передавали его цепной реакцией. Реле работало в первых компьютерах, выполняло простые команды в логических цепях.

Для чего в реле используется электромагнитное поле ? Оно является амортизатором, который замедляет или полностью обесточивает движение, при резком попадании катушки в среду напряжения. Именно это свойство даёт возможность реле задерживать время: замедляется время подключения якоря к катушке напряжения.

Несколько вариантов таких устройств

Использование реле времени даёт возможность экономить на потреблении электроэнергии, так как свет будет включаться и выключаться автоматически, через установленный промежуток времени.

Как работает реле задержки времени

Благодаря тому, что электрический ток при помощи проводников создаёт магнитное поле, текущее состояние реле реагирует индукторами на все изменения. Местонахождения магнитного поля будет зависеть от формы проводника. Если он сделан под прямым углом, то и поле будет располагаться так же, если в форме катушки, то магнитное поле будет располагаться вдоль всей её длины. Сила магнитного поля напрямую зависит от напряжения тока.

Реле стали популярными, потому что доказали всю эффективность при использовании. Они могут контролировать большие и маленькие напряжения. Катушка реле способна пропускать через себя доли ватт, в то время как контакты проводят сотни ватт энергии нагрузки.

Принцип действия реле напоминает бинарный усилитель включения и выключения. Как показывает практика, одна катушка реле может приводить в действие несколько контактов одного прибора. Это могут быть контакты любой комбинации. Устройство работает с контактами любого вида: ртутными, металлическими, магнитными тростниками.

Из чего состоит реле задержки?

Если устройство представляет собой простое двухканальное электромагнитное реле, то в него входят:

Якорь крепится с помощью шарниров с ярмом и механически связывается и одним или несколькими наборами контактов. Сам якорь удерживает пружина. Она установлена таким образом, чтобы во время отсутствия тока, в магнитной цепи образовывался воздушный зазор . В таком режиме устройства, один из контактов находится в закрытом положении, другой – в открытом. Некоторые из видов устройств имеют большее количество контактов, все зависит от предусмотренных функций.

При поступлении электрического тока, происходит генерация магнитного поля, что позволяет активизировать арматуру с последующим перемещением подвижного контакта. Это позволяет делать разрыва или соединения с неподвижными контактами. При открытых контактах происходит соединение и смыкание контактов, при выключении действия противоположные. При выключенном токе якорь занимает своё первоначальное положение и возвращается под действие силы, которая в несколько раз меньше магнитной, поэтому его положение нормально-расслабленное. Чаще всего эту силу обеспечивает пружина, гравитация применяется только в промышленных установках.

Когда происходит подача тока на катушку, диод проходит через неё и рассеивает энергию из распадающегося магнитного поля при дезактивации . Если этот процесс не запустится, то компоненты схемы получат энергетический всплеск, что повлечёт их выход из строя.

Реле задержки своими руками

Для создания реле с задержкой выключения в 220 В не нужно особых электромеханических знаний, достаточно будет владеть базовыми познаниями в физике и электромеханике. Существует определённое руководство , которое поможет собрать реле самостоятельно.

Для реле времени оптимальным считается использование схем на транзисторе . Такие реле отлично подходят для контроля работы дворников на машине, включения и выключения света на улице, работы стиральной машины . Задержка включения реле 220В - отличный вариант, сочетающий в себе бытовые удобства и великолепную экономию.

С помощью электронных реле можно неплохо экономить деньги, к примеру, возьмем свет в коридоре, кладовке или подъезде. Нажимая кнопку, мы включаем свет и через определенное время он автоматически отключается. Этого времени должно хватить на поиски предмета в коридоре, кладовке или попадание в квартиру. К тому же освещение без надобности не горит, если вы забыли его выключить. Это устройство не только полезно, но и очень удобно. В этой статье мы расскажем, как сделать реле времени своими руками, предоставив все необходимые схемы и инструкции.

Простейший вариант

Пример конструктора для самодельной сборки таймера задержки отключения:

При желании возможно самостоятельно собрать реле времени по следующей схеме:

Времязадающим элементом является С1, в стандартной комплектации КИТ-набора он имеет следующие характеристики: 1000 мкФ/16 В, время задержки в этом случае составляет приблизительно 10 минут. Регулировка времени осуществляется переменным R1. Питание платы 12 Вольт. Управление нагрузкой производится через контакты реле. Плату можно не делать, а собрать на макетной плате или навесным монтажом.

Для того, чтобы сделать реле времени, нам понадобятся следующие детали:

Правильно собранное устройство не нуждается в настройке и готово к работе. Данное самодельное реле задержки времени было описано в журнале «Радиодело» 2005.07.

Самоделка на базе таймера NE 555

Другая схема электронного таймера для сборки своими руками также легка и доступна для повторения. Сердцем данной схемы является микросхема интегрального таймера «NE 555». Данный прибор предназначен как для отключения, так и включения устройств, ниже представлена схема устройства:

NE555 – это специализированная микросхема, используемая в построении всевозможных электронных устройств, таймеров, генераторов сигнала и т.д. Она достаточно распространена, поэтому ее можно найти в любом радиомагазине. Данная микросхема управляет нагрузкой через электромеханическое реле, которое можно задействовать как на включение, так и на выключение полезной нагрузки.

Управление таймером осуществляется двумя кнопками: «старт» и «стоп». Для начала отсчета времени необходимо нажать на кнопку «старт». Отключение и возврат устройства в первоначальное состояние осуществляется кнопкой «стоп». Узлом, задающем интервал времени, является цепочка из переменного резистора R1 и электролитического конденсатора C1. От их номинала зависит величина задержки включения .

При данных номиналах элементов R1 и C1, диапазон времени может быть от 2 секунд до 3 минут. В качестве индикатора состояния работоспособности конструкции используется включенный параллельно катушке реле светодиод. Как и в предыдущей схеме, для ее функционирования требуется дополнительный источник внешнего питания на 12 Вольт.

Для того чтобы реле само включалось сразу при подаче на плату питания, необходимо немного изменить схему: вывод 4 микросхемы соединить с плюсовым проводом, вывод 7 отключить, а выводы 2 и 6 соединить вместе. Более наглядно о данной схеме можно узнать из видео, где подробно описан процесс сборки и работы с устройством:

Реле на одном транзисторе

Самый простой вариант — использовать схему реле времени всего на одном транзисторе, КТ 973 А, его импортный аналог BD 876. Данное решение также основано на заряде конденсатора до напряжения питания, через потенциометр (переменный резистор). Изюминка схемы заключается в принудительном переключении и разряде емкости через резистор R2 и возвращении исходного начального положения тумблером S1.

При подаче питания на устройство емкость С1 начинается заряжаться через резистор R1 и через R3, открывая тем самым транзистор VT1. Когда емкость зарядится до состояния отключения VT1, обесточивается реле, тем самым отключая или включая нагрузку, в зависимости от назначения схемы и используемого типа реле.

Выбранные вами элементы могут иметь незначительный разброс в номиналах, это не повлияет на работоспособность схемы. Задержка может немного отличаться и зависеть от температуры окружающей среды, а также от величины сетевого напряжения. На фото ниже предоставлен пример готовой самоделки:

Теперь вы знаете, как сделать реле времени своими руками. Надеемся, предоставленные инструкции пригодились вам и вы смогли собрать данную самоделку в домашних условиях!

Схема задержки включения нагрузки на 555 таймере позволяет питать устройства, требующие подачи напряжения с задержкой. Ключевым элементом служит MOSFET транзистор IRF5305. Это позволяет подключать нагрузку с током потребелния до 31 А. Данная схема рассчитана на работу с напряжением 12-15 В (в автомобиле) и может использоваться для задержки включения ламп заднего хода для автомобилей с АКПП (если вдруг там установлены мощные лампы или даже ксенон) либо для задержки включения дополнительных фар дальнего света (чтобы можно было моргать только основными); и для многих других применений.

Схема реле задержки показана на рисунке (для увеличения кликнуть):

Реле задержки собрано на таймере 555 (русский аналог - КР1006ВИ1). Времязадающая цепочка C1R1 обоспечивает задержку включения, рассчитываемую по формуле 1,1*R1*C1. При заданных номиналах время задержки составляет около 1.5 сек. Элементы R2, C2 образуют простейший фильтр импульсных помех по питанию, так как схема задумывалась для использования в автомобиле. Биполярный транзистор T1 служит инвертором выходного сигнала таймера, чтобы открывать p-канальный полевой транзистор, управляющий нагрузкой. T1 может быть любым n-p-n транзистором. Резистор R5 служит токоограничивающим резистором в момент открытия Q1, чтобы предотвратить повреждение транзистора Т1. Выходной транзистор Q1 имеет малое сопротивление в открытом состоянии (0,06 Ом) , поэтому при токах даже до 20А может использоваться без радиатора. Нагрузка подключается между выводом 1 разъема X1 и землей. Разъем Х1 - 3-х контакнтынй клеммник с шагом 5мм.

Схема собрана на печатной плате размером 48х27 мм.

Рисунок печатной платы в зеркальном виде:

Большое отверстие на земляном полигоне сделано под винт крепления сразу к массе автомобиля.

Схема расположения элементов:

Обратите внимание, что расположение транзистора Т1 на плате на этом рисунке показано для другой цоколевки. По факту нужно смотреть на цоколевку конкретного транзистора.

Фотографии готового реле задержки:

Как видите, использована русская микросхема КР1006ВИ1.

Резистор R2 установлен двухваттный, с запасом, хотя и одноваттный вполне сойдет.

Силовые дорожки от клеммника до транзистора дополнительно пропаяны кусками отрезанных выводов деталей для увеличения проходящего по ним тока.

Вся плата с обеих сторон 2 раза покрыта канифольным спреем FLUX, кроме клеммника и площадки с отверстием под винт. Они предварительно заклеены скотчем. Спрей FLUX создает защитную пленку из канифоли, которая при необходимости легко паяется. Если реле задержи планируется размещать во влажных местах, то необходимо либо поместить его в корпус, либо покрыть каким-либо защитным лаком, например, уретановым ROT. При монтаже на винт следует не допускать контакта остальной платы с металлическим основанием.

Проект реле задержки включения в формате KiCad можно