Наноэлектроника – область современной электроники, занимающаяся разработкой физических и технологических основсоздания интегральных электронных схем и устройств на их основе с размерами элементов менее 100 нм.

Основная задача наноэлектроники состоит в разработке новых электронных устройств со сверхмалыми размерами, создании методов их получения и объединения в интегральные схемы. Научные исследования и технологические разработки в наноэлектронике опираются на передовые знания в области электроники, механики, материаловедения, физики, химии, биологии и медицине. И объединяет их объект исследований – структуры со сверх малым и размерами и необычными для «большого» мира свойствами. основной тенденцией развития всей электроники в целом является миниатюризация, или уменьшение массы и размеров электронных приборов и устройств. Последовательные технологические переходы от электротехнических компонентов – к электронным лампам, от ламп – к транзисторам, от транзисторов – к интегральным схемам позволили создать современные мобильные телефоны, карманные компьютеры, индивидуальные медицинские аппараты и многие другие продукты электроники, прочно вошедшие в жизнь современного человека.

Термин «наноэлектроника» неразрывно связан с термином «микроэлектроника» и отражает переход современной полупроводниковой электроники с характерными размерами в микронной и субмикронной области к элементам с размером в нанометровой области. Принципиально новая особенность наноэлектроники связана с тем, что в элементах таких размеров начинают преобладать квантовые эффекты, т.е. в наноэлементе рассматриваются уже не электроны, как частицы переносящие заряд, а их волновые функции. Они и определяют специфические электронные, оптические, магнитные, химические, биохимические и другие свойства материалов и изделий. Как правило, наноэлектронный элемент состоит из набора квантовых ям и потенциальных барьеров, и его энергетическая диаграмма существенно меняется с добавлением лишь одного электрона. Малая инерционность электронов позволяет эффективно использовать их взаимодействие с микрополями внутри атома, молекулы, кристаллической решетки для создания приборов и устройств нового поколения, в которых это взаимодействие используется для передачи, обработки и хранения информации. Единственным сдерживающим фактором развития наноэлектроники на сегодняшний день являются недостаточно совершенные технологии. Развитие науки происходит стремительно, изобретения появляются с удивительной скоростью, так что будущее сулит новые достижения на основе новых принципов работы на уровне отдельных атомов.

На дворе 21 столетие, - время, когда давно наступил век информационных технологий, и для нас, живущих в эту эру, самым важным и дорогим товарам стала информация. В сегодняшние дни для получения необходимой информации заинтересованные лица могут применить любые доступные им средства. А установка и использование различной прослушивающий аппаратуры, такой как жучки, радиомикрофоны, подслушивающие устройства, давно не является исключительной прерогативой спецслужб - сейчас это может сделать чуть ли не каждый.

Говоря о способах получения информации, мы фокусируемся именно на способах прослушивания помещений при помощи скрытых технических средств. В большинстве случаев оно выполняется с помощью направленных микрофонов, телефонов, GSM передатчиков, радиожучков, лазерных устройств съема информации. Согласно конституции для граждан может быть введено ограничение на неприкосновенность частной жизни, но только по санкции суда, к сожалению, этот принцип часто нарушается. Происходит это из-за высокой криминализации общества, а также вытекающей из этого потребности граждан в самозащите.

Многие даже не догадываются, что прослушивающие устройства появились задолго до нашего времени. Естественное желание знать тайны было свойственно людям во все времена. Тогда как до XX столетия приходилось обходится скрытыми комнатами, которые давали возможность находится рядом при интересных разговорах, то в настоящее время возможности для подслушивания стали существенно шире. Впервые широкую огласку приобрела история с "жучками" в 1972 году в Соединенных Штатах. В то время группа специалистов при содействии некоторых сотрудников предвыборного штаба Никсона незаметно проскользнула в штаб -квартиру кандидата от партии демократов. После того, как не было найдено полезных документов, проникшие установили там радиомикрофоны. Эти жучки позволили узнать о чем разговаривают активисты в конкурирующем штабе. В результате дело получило широкую огласку. Таким образом "жучки" перестали быть лишь инструментом спецслужб, стали методом доступным для гражданских применений - корпоративного, политического шпионажа, а также начали использоваться для частного сыска.

В настоящее время прослушивание разговоров может организовать почти каждый. Для этого не применяются сложные технологии. Любой подкованный технический специалист может "состряпать" такое устройство за день. Главным техническим средством для прослушки является жучок - радиомикрофон. Со временем изменились лишь его размеры, а от модели к модели они в основном различаются только маскировкой. Главная тенденция последнего времени - уменьшение габаритов компонентов электронной техники. Наиболее распространённые прослушивающие устройства которые используются описаны ниже.

Радиожучки

Жучок с радиопередатчиком - наиболее удобное для установки устройство для скрытого прослушивания. В большинстве случаев, они содержат радиопередатчик в УКВ диапазоне. Бывают как временные так и установленые стационарно. Те что устанавливаются стационарно запитаны от электросети, временные жучки запитаны от элемента питания - батарейки или аккумулятора. Чаще всего подобные устройства устанавливают в бытовую технику, розетки, осветительные приборы, прочие элементы интерьера. Временные приборы, как правило, рассчитаны на сравнительно короткий срок работы, устанавливаются тайно. Часто, для такого вида работы привлекаются сотрудники работающие на объекте или посетители. Жучки стараются установить в тех местах, где найти их будет затруднительно. Бывает такое, что прослушивающие устройства маскируются под повседневные предметы, которые часто используют в работе или интерьере и находятся на видном месте. Это могут быть шариковые ручки, сувениры, малозаметные безделушки.

Основным недостатком временных устройств есть то, что они ограничены временем автономной работы. Период времени автономной работы сильно зависит от мощности радиопередатчика и емкости элементов питания. Дальность перехвата разговоров сильно зависит от чувствительности микрофона встроенного в жучок, разговоры принимаются на расстоянии от 3 до 25 метров. При этом радиус передачи снятой информации по радиоканалу может составлять от нескольких десятков до сотен метров. Иногда для увеличения дальности передачи могут быть использованы промежуточные ретрансляторы. Установка жучков на металлических предметах, трубах отопления может служить как дополнительная антенна для усиления.

Радиозакладки выпускаемые серийно работают в разных частотных диапазонах - от единиц мегагерц до гигагерца. В импортных образцах чаще всего используются частоты 20-25 МГц, 130-180 МГц, 390-520 МГц. Чем выше частота передачи, тем больше дальность работы передатчиков в условиях помещения с кирпичными и бетонными стенами. Но для таких частот требуется специальная приемная аппаратура. Для защиты от обнаружения, профессионалы иногда применяют методы, которые позволяют растянуть спектр сигнала, используют двойную модуляцию несущей частоты, применяют другие похожие схемы.

Телефонные "жучки"

Основное предназначение телефонных "жучков" - снимать и передавать разговоры в закрытой комнате при положенной телефонной трубке с передачей данных в телефонную линию. При такой схеме становится возможным слушать как телефонные разговоры , так и комнатные разговоры . Также используются следующие приемы направленные на прослушку разговоров в комнате: прослушка через цепь квартирного звонка, прослушивание с помощью техники СВЧ отражения от вибрирующих поверхностей с последующей демодуляцией звукового сигнала, установка GSM жучков работающих по радиоканалу телефонного оператора.

Телефоны c наружной активацией

При такой схеме контролируемый телефонный аппарат не трогают. Данные считываются с телефонной линии при положенной трубке. Такая возможность обеспечивается подачей внешнего высокочастотного сигнала, который вызывает активацию микрофона телефонной трубки. Порой получается перехватить микротоки, возникающие в электромагнитном звонке от звуковых вибраций. Таким же образом есть возможность перехватить микротоки звонка в квартире.

Сетевые передатчики

Они устанавливаются в электроприборы и передают информацию в низкочастотном, звуковом диапазоне. В качестве канала для передачи звуковой информации ими используется обычная электропроводка. Снять такой сигнал можно с любой розетки, которая находится с том же сегменте электросети. Естественно, первый же трансформатор полностью блокирует такой сигнал, по этому в соседнем сегменте электросети его считать будет невозможно.

Стационарные микрофоны

Микрофоны стационарной установки могут быть замаскированы и установлены в самых неожиданных местах. Их соединяют незаметными тонкими проводами с пунктом прослушки, который создается вблизи контролируемого помещения. Хорошими микрофонами могут стать столешницы, полки для документов с жестко прикрепленными к ним пьезодатчиками. Провода от таких микрофонов могут быть протянуты под гипсокартоном, обоями, в плинтусах либо под ковролином. Вывод проводов зачастую делают в местах вывода телефонных или компьютерных коммуникаций, входящих в помещение. Основным недостатком такого рода прослушивающих устройств является необходимость длительной предварительной подготовки помещения, в котором устанавливается спецсредство.

Подведенные микрофоны

Подведенный микрофон - устройство которое устанавливают не внутри, а снаружи контролируемого помещения. Для такой установки, безусловно, требуется иметь доступ к одной из внешних стен помещения, либо к инженерным коммуникациям, которые подводятся в объект. Для осуществления прослушки, например, можно снизу под дверь прикрепить плоский кристаллический микрофон. Если у смеженных комнат используются симметричные розетки, можно воспользоваться тем, что из одной розетки есть доступ к другой, а там уже можно поставить микрофон. В ряде случаев, можно просверлить незаметное микроотверстие в стене, и воспользоваться игольчатым микрофоном, в этом случае звук можно подвести через тонкую трубку длиной до 20-30 см.

Контактный микрофон

В качестве примера такого приспособления можно привести стандартный медицинский стетоскоп прикрепленный к микрофонному капсюлю, который подключен к усилителю. Бывает такое, что достаточно стетоскопа без дополнительной электроники.

Высококачественные датчики можно сделать из пьезо-керамических головок или обычных пьезоизлучателей. В качестве доноров могут быть использованы проигрыватели, электрические часы, игрушки с звуковыми эффектами, телефоны или сувениры. Эти устройства воспринимают малейшие колебания пластинок и тем самым позволяют снимать достаточно тихий сигнал. Но для них требуется тщательно выбирать место для установки. Оно зависит от особенностей конкретной стены или инженерной коммуникации. В ряде случаев есть смысл приклеить пьезодатчик к внешнему стеклу окна. Отличный сигнал можно снимать с труб системы отопления.

Импровизированные резонаторы

Подслушивать разговор из соседнего помещения зачастую можно и без специальной аппаратуры. Для этого достаточно бокала для вина или аналогичной по форме прочей питейной емкости. Ободок бокала сильно прижимается к стене, а дно прикладывается к уху. Эффективность такого резонатора сильно зависит от толщины, материала и конфигурации стены, а также от формы, размера и материала питейного прибора.

Есть и другие варианты для прослушивания: модуляция луча лазера вибрациями оконного стекла, съем побочных электромагнитных излучений домашней и офисной радиоаппаратуры, активация пассивных электромагнитных излучателей бесконтактным способом. Но эти методы достаточно сложны для аматеров и используются в основном профессионалами дела.

  • Программа AudioSP -
  • Наноэлектронные приборы и устройства создаются с помощью методов нанотехнологии. Под нанотехнологией подразумевается совокупность технологий, процессов и методик, основанных на манипуляциях с отдельными атомами и молекулами с целью получения новых материалов, приборов и устройств. Нанотехнология может использоваться в электронике, материаловедении, химии, механике, биомедицине и других областях науки и техники. А атомной и квантовой физике характерной единицей длины принято считать величину 1 А или 10 -10 м., данный выбор обусловлен тем, что ангстрем соответствует диаметру самого маленького из атомов - атома водорода. Диаметры других атомов могут лишь немного превышать 2 А. Нанометр в 10 раз больше.

    Область нанодиапазона от 1 нм до 100 нм. В живой природе, состоящей так же, как и неживая материя, из атомов, молекулы протеина и липидов имеют размеры до 10 нм. Масштаб рибосом и вирусов лежит в пределах 100 нм. Например, один из продуктов нанотехнологии - нанотрубки,а также элементы сверхбольших интегрированных схем тоже имеют размеры ~100нм. Именно это дает надежду на успешное совмещение технологий живых и неживых систем, создание микроминиатюрных устройств, лекарств. Следует отметить, что с возрастанием производительности микрочипов они становятся дешевле и потребляют меньше энергии по сравнению с чипами предшествующего поколения.

    Рис. 5.

    По мере приближения размеров твердотельных структур к нанометровой области все больше проявляются квантовые свойства электрона. В его поведении преобладающими становятся волновые закономерности, характерные для квантовых частиц. С одной стороны, это приводит к нарушению работоспособности классических транзисторов, использующих закономерности поведения электрона как классической частицы, а с другой - открывает перспективы создания новых уникальных переключающих, запоминающих и усиливающих элементов для информационных систем. Это и есть основные объекты исследований и разработок новой области электроники - наноэлектроники.

    Разработанные за последние годы наноэлектронные элементы по своей миниатюрности, быстродействию и потребляемой мощности составляют серьезную конкуренцию традиционным полупроводниковым транзисторам и интегральным микросхемам на их основе как главным элементам информационных систем. Уже сегодня техника вплотную приблизилась к теоретической возможности запоминать и передавать 1 бит информации (0 и 1) с помощью одного электрона, локализация которого в пространстве может быть задана одним атомом. Ожидает практического разрешения и идея аналогичных однофотонных элементов.

    Широкое применение одноэлектронных и однофотонных элементов для создания информационных систем пока сдерживается недостаточной их изученностью, а главное, отсутствием удобных для массового производства технологий, позволяющих конструировать требуемые структуры из отдельных атомов. Такие возможности существуют только в исследовательских лабораториях. Однако современные темпы развития электроники позволяют уверенно прогнозировать промышленное освоение нанотехнологии, а вместе с ней и наноэлектроники уже в начале XXI века.

    В основе приборов наноэлектроники лежат волновые свойства электрона и связанные с этим другие физические явления и эффекты. Движение электрона и связанной с ним волны де Бройля в наноразмерных твердотельных структурах определяется эффектами, споряженными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры. И эти эффекты будут вносить тем больший вклад в электрические процессы в элементе, чем меньше его размер. Когда же размер элемента сравнится с длиной волны электрона, эти эффекты станут преобладающими.

    На данном рисунке приведена уникальная фотография, экспериментально подтверждающая наличие дебройлевской волны. С помощью туннельного микроскопа удалось рассадить 48 атомов железа на поверхности меди. Сформирован «квантовый загон» радиусом 7,1 нм. Волны внутри загоны представляют собой стоячие волны зарядовой плотности, соответствующие решению уравнения Шредингера. Возникновение или отсутствие изображения зависит от положения вновь имплантированного атома. Если дебройлевские волны складываются в фазе в процессе конструктивной интерференции, то изображение появляется. При деструктивной интерференции оно исчезает. Эта картинка - одно из доказательств волновой природы отдельного атома или электронов и внешних его орбит.

    Решение проблем перехода от микро- к наноэлектронике вовсе не отрицает дальнейшего пути развития микроэлектроники. Однако становление наноэлектроники сулит новые научные достижения и разработки в области технологии во многих отраслях науки и техники. Развитие научных исследований наноструктур и нанотехнологий позволит получить материалы и приборы с новыми уникальными свойствами и, следовательно, решить ряд актуальных задач как в области электроники, так и во всех остальных отраслях науки и промышленности. В наномире будут работать и «старые» идеи схемотехнической электроники, в основе которых лежит использование усовершенствованного транзистора. Вместе с тем, наномир способствует рождению свежих идей, связанных с волновыми свойствами электрона, с солитонами, как носителями информационного сигнала, с новыми материалами, с новой технологией. Поэтому и появляются новые приборы и устройства наноэлектроники, реализованные либо на совершенно новых принципах, либо на хорошо забытых методах обработки информации.

    Доброе время суток. Мы продолжаем наши статьи для новичков и к вашему вниманию представляем еще один вариант простого - жучка. Конструкция достаточно проста и думаю проблемы с ней не возникнут. Устройство собрано навесным монтажом, микрофон любой электретный, лучше подобрать с большой чувствительностью. Данное прослушивающее устройство обеспечивает дальность приема до 100 метров. Питанием жучка служит литиевая таблетка с напряжением 3 вольта. Принципиальная схема жучка:

    Рассмотрим сxему устройства. Катушка содержит 6 витков провода с диаметром 0,5 мм, мотают ее на пасте от обыкновенной ручки, если нужно питать от кроны, нужно поднять номинал резистора 220 ом до 330 ом. Резистор 4,7 килоома регулирует ток микрофона.

    Его номинал тоже пропорционально зависит от напряжения питания. После намотки, в катушку вставляют небольшую губку и заливают парафином. Это сделано для устранения микрофонного эффекта. Антенна - кусок изолированного провода длинной 20 сантиметров, можно и больше.


    Настройку делают следующим образом - включают радиоприемник на частоту 93 мегагерц и крутят переменный конденсатор с емкостью 33 пикофарад, что стоит в колебательном контуре генератора. Крутим медленно, пока не услышим писк в динамике радиоприемника. Дальше оставляем жук в покое и настройку делаем от приемника снижая частоту до 91 мегагерц если сигнал начинает теряться, то частоту поднимаем до 95 пока не уловим частоту жучка. Если слышны искажения в разговоре, то снижаем емкость конденсатора 1000 пикофарад и на его место ставим конденсатор 220 пикофарад.


    Готовое устройство ставим в удобный корпус. Антенну можно накрутить на пальчиковую батарейку, так чтобы она приняла форму пружины и спрятать ее внутри корпуса с жучком. Ток потребления жучка в пределаx 5 милиампер. Прослушивающее устройство готово к использованию. Схему прислал - АКА.

    Обсудить статью ПРОСЛУШИВАЮЩЕЕ УСТРОЙСТВО


    После принципиального шага в развитии электроники – перехода к интегральным схемам – в соответствии с законом Мура шел процесс дальнейшей миниатюризации устройств и уменьшения их электропотребления. Например, в ближайшие годы предполагается уменьшение размера микрофона мобильного телефона настолько, что он будет сопоставим с толщиной человеческого волоса. На рисунке 6.1 приведены для сравнения фотографии первой интегральной схемы Дж. Килби (1958) и первой интегральной схемы на одной углеродной нанотрубке (2006). Плотность информации в устройствах современной наноэлектроники сопоставима с плотностью информации, зашифрованной в ДНК.

    Специалисты области микроэлектроники обоснованно называют её развитие одним из стратегических направлений мирового научно-технического прогресса. Именно развитие микроэлектроники сделало возможным реализацию идей нанотехнологии и послужило од-ним из объективных факторов, вызвавших третью научно-техническую революцию. И в настоящее время электроника является основной практической областью применения нанотехнологии. Вместе с тем наноэлектроника отличается от микроэлектроники рядом существенных моментов. Это совершенно новая область науки и техники, которая использует быстродействующие и сверхминиатюрные системы, функционирующие на основе квантовых эффектов. Удивительные новые возможности наноэлектроники сопровождаются неизвестными ранее трудностями, связанными с квантовой природой процессов в ее устройствах. Такая ситуация вообще характерна для наноструктур. Возникают проблемы, связанные с различными пределами (ограничениями), обусловленными фундаментальными законами физики: предел однозначного представления и обработки информации; предел, связанный с тепловым делением; предел терминированного (точного) управления устройствами и т. д.

    Например, серьезную проблему для компьютеров составляет тепловыделение, которое уже сейчас близкая к критическому. Плотность упаковки элементов на чипе лимитируется не только размерами атомов, но ипринципом Ландауэра, по которому потеря каждого бита информации поводит к выделению тепла в количестве k Б T ln 2, где k Б – постоянная Больцмана, Т – абсолютная температура, ln 2 ≈ 0,7. Чем больше скорость компьютера, тем больше тепловыделение. Для борьбы сперегревом в суперкомпьютерах предлагается создавать локальные низкие температуры или даже размещать на компьютере на геостационарных орбитах, используя низкую температуру космоса. Выгодная особенность оптических компьютеров как раз состоит в том, что в них свет проходит через оптическую систему практически без тепловыделения, тепло выделяется только в детекторах, считывающих информацию.



    Именно тепловыделение создает основные трудности для реализации суперкомпьютера с частотой 3 – 10 квадриллионов (10 15) в секунду (3–10 petaflops). Группа японских компаний надеется достичь такого предела к 2011 г. за счет проекта в 700 млн долларов. В 2006 г. в Иокогаме был продемонстрирован петафлопный суперкомпьютер MDGrape-З с рекордной теоретической производительностью 1 квадриллион операций в секунду. Специалисты компании «IBM», одного из лидеров в области суперкомпьютеров, сравнивают производительность такой системы с производительностью стопки ноутбуков высотой около 2400 м.

    Стоит вспомнить, что первая электронно-вычислительная машина ENIAC, созданная в 1946 г. «IBM» по заказу Министерства обороны США, производила 5 тыс. операций в секунду. При этом она весила 30 т и состояла из 18 тыс. электронных ламп.

    Еще один пример физического предела, связанного с переходом к наноразмерам, – предельная толщина изолирующего слоя оксида кремния в транзисторе. Если слой тоньше 1,5–2 нм (4–5 молекул), возникают неконтролируемые туннельные переходы и перегревы.

    В кратком изложении трудно описать все проблемы и перспективы наноэлектроники. Выделим нижеследующие.

    Переход на наноразмеры поставил задачу создания молекулярного компьютера, который должен включать молекулярные транзисторы, наноустройства памяти, наноразмерные провода. Если молекулярный транзистор будет размером порядка 1 нм (3–5 размеров атома), плотность размещения элементов электроники возрастет по сравнению с нынешней в 10 тыс. раз. Однако нанотранзистор – это квантово-механическое устройство, и протекающий через него ток нельзя рассматривать как непрерывный поток электронной «жидкости»: он дробится на небольшое число электрических зарядов. Конструирование и использование нанотранзистора базируются на законах квантовой механики и достаточно сложны.

    Любой транзистор представляет собой систему, в которой можно управлять силой тока между двумя элементами влиянием на них третьего элемента. Молекулярный транзистор может представлять собой всего одну молекулу с переменными электрическими свойст­вами. Таким образом, в ней будут совмещены все три элемента транзистора. Например, молекула фотохромного соединения меняет свою конфигурацию в результате электрохимического окисления. Уже созданы нанотранзисторы на основе углеродных нанотрубок, фуллеренов и пр.

    В микроэлектронике в транзисторах используется полупроводник, так как в нем легко управлять концентрацией носителей заряда. Но полупроводниковыми свойствами могут обладать также кластеры металла при определенном числе атомов в них. Для стабильности системы берутся кластеры с магическим числом атомов.

    Полученные результаты научных исследований пока не привели к созданию массовой технологии нанотранзисторов, но ведущие лаборатории мира и крупнейшие фирмы в области электроники ведут активную работу и не расшифровывают полностью свои практи­ческие разработки, имеющие большое экономическое и военное значение.

    Важная составляющая молекулярного компьютера – память – будет четко разделяться на оперативную, быстродействующую, и память более «медленную», но зато с длительным хранением информации. Отдельным элементом памяти также может быть отдельная молекула, которая под внешним воздействием (например, лазерного излучения) меняет свое состояние. Два состояния молекулы соответствуют двоичному коду. В этом случае возможны проблемы, связанные с самопроизвольным переходом молекулы в другое состояние из-за теплового движения или туннельного перехода, что приведет к потере информации.

    И наконец, еще одна необходимая составляющая молекулярного компьютера – нанопровода, соединяющие все его элементы. Здесь вы двигаются различные вари анты. Один из них – использование углеродных нанотрубок, в том числе наполненных атомами металла. Возможно использование макромолекул полимеров, проводящих электрический ток. В 2005 г. в журнале «Nature» появилось сообщение о «микробной нанопроволоке», которую вырабатывают микроорганизмы Geobacter (рис. 6.2). Они при переработке отбросов сточных вод превращают химическую энергию в электроэнергию. Этот процесс сопровождается построением электропроводящих структур. Заметим, что планируется использование колоний этих бактерий для биологической очистки воды от химикатов, нефти и тяжелых металлов, а также для получения батарей нового типа, актуальных для глубоководных сенсоров. Появлялись сообщения о металлизации паутины, нитей дрожжевых белков и пр.

    Во всех случаях главной остается проблема присоединения нанопровода к другим наноэлементам молекулярного компьютера. Для массовой технологии таких способов пока нет. Надежды, как часто в нанотехнологии, связаны с развитием механизмов самоорга­низации.

    Разновидностью молекулярного компьютера является биологический компьютер, все части которого построены из биомолекул. В частности, им активно занимается Американское агентство оборонных перспективных исследовательских разработок «DARPA» (именно в его недрах родился Интернет).

    Возможно, в будущем подобные устройства будут вживляться в человеческий организм в качестве постоянного активного сенсора.